Collaborative Incident Handling Based on the Blackboard-Pattern

Nadine Herold, Holger Kinkelin and Georg Carle

November 8, 2016

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich
Contents

Motivation and Background

Related Work

Problem Statement

System Design and Implementation

Evaluation

Conclusion
Motivation and Background

Related Work

Problem Statement

System Design and Implementation

Evaluation

Conclusion
Motivation

- Amount and variants of attacks on networks is growing
- Defending networks manually is impossible
- **Automated** incident handling is highly beneficial
 - Continuously defend the network
 - Respond quickly
 - Less error-prone
 - Systematical incident response
- We focus on **intrusion handling**
Background: Typical Intrusion Handling Steps

- Network Monitoring (NMS) and Intrusion Detection Systems (IDS) collect information about the network and its healthiness
 - NMS: collect infrastructure information
 - IDS: raise alerts when an intrusion is detected

- Alert Processing Systems (APS) aggregate, correlate and prioritize alerts
 - Gain more insights into the intrusion by analyzing the situation

- Intrusion Response Systems (IRS) counteract automatically
 - Identify suitable responses
 - Execute responses on the target network, e.g., block a rogue host
Motivation and Background

Related Work

Problem Statement

System Design and Implementation

Evaluation

Conclusion
Execution Model: Pipelined Intrusion Handling

NMS

Info

NIDS

Alert

HIDS

Alert

APS

Correlated or Aggregated Alerts

IRS

Response

Amount of Information

Holger Kinkelin – Collaborative Incident Handling Based on the Blackboard-Pattern
Other Execution Models

- Pipelined intrusion handling
 - Information loss from step to step
 - Limited information sharing capabilities

- Intrusion handling using Complex Event Processing (CEP)
 - Window size difficult to determine
 (too large → low performance; too small → information loss)
 - Limited information sharing capabilities

- Agent-based systems for intrusion handling
 - Central intelligent master component needed to dispatch information to agents
Motivation and Background

Related Work

Problem Statement

System Design and Implementation

Evaluation

Conclusion
Problem Statement

- Significant effort has been made to improve each intrusion step individually.
- No solution exists that interleaves steps and creates a comprehensive view on the target network:
 - Information already collected/computed in previous steps is lost for being used by subsequent steps.
 - Information and intermediate results cannot be shared efficiently between single steps.
- Post-incident forensics of intrusion handling activities difficult.
Motivation and Background

Related Work

Problem Statement

System Design and Implementation

Evaluation

Conclusion
Introducing the Blackboard Pattern

- The blackboard pattern is applicable to problems that can be **decomposed** into smaller sub-problems / sub-tasks
 - Example: (distributed) incident handling / intrusion handling
- Sub-tasks solve their sub-problem and **share** their intermediate results with other sub-tasks
- Original information remains untouched
- Original information + intermediate results can be **reused** by sub-tasks to further tackle the problem
- Blackboard needs an **Information Model** specifically designed for the problem domain
Blackboard-based Intrusion Handling

- **NMS** (Network Management System)
- **NIDS** (Network Intrusion Detection System)
- **HIDS** (Host Intrusion Detection System)
- **Alert Processing**
 - Intermediate Results (Aggregated or Correlated Alerts)
 - Original, Aggregated or Correlated Alerts and Info

Blackboard

IRS (Intermediate Response System)

Information Model
System Overview

Aggregation → Priorisation → Correlation → Insert → Response Evaluation → Response Execution → Response Selection → Response Identification

Target System

HIDS NIDS NMS

Interface 1 ... Interface N
Requirements on an Information Model

... suitable for intrusion handling

- **R1: Separation** – Segmentation of information enables updating/adding of information by different modules
- **R2: Completeness** – Information for all steps of Incident Handling needs to be present
- **R3: Compatibility** to the IDMEF standard\(^1\) used by many IDSes

\(^1\) Intrusion Detection Message Exchange Format, RFC 4765

Holger Kinkelin – Collaborative Incident Handling Based on the Blackboard-Pattern
Information Model for Intrusion Response - Overview

Alert Processing
- Alert
- Consequences
- Attack
- Target
- Source
- Priority
- Alert Context

Infrastructure Information
- Network
- L3-Network
- IP-Address
- Port
- Service
- User

Intrusion Response
- Response
- Network-Based
- Host-Based
- Service-Based
- User-Based
- Active
- Passive
- Metric
- Implementation
- Response Bundle

Holger Kinkelin – Collaborative Incident Handling Based on the Blackboard-Pattern
Infrastructure Information Model – Examples

- NMSes send their scanning results to specific interfaces which add the info to the Blackboard
- A Service runs at a Port opened on a NIC with an IP-Address belonging to a L3-Network
- A Device has a NIC with MAC-Address and assigned IP-Address
- A User is logged into Device
- A User uses Service
Alert Information Model – Examples

• IDSEs send IDMEF messages containing alerts to specific Blackboard Interfaces

• IDMEF alerts are normalized and combined into an Alert Context
 • Source (of attack)
 • Target (of attack)
 • Attack (type)

• Alert and Alert Context nodes have a Priority

Alert Processing
Implementation

• Python 3
• Object oriented implementation of Information Model
• Automatic translation of class structures to suitable database design
• Two different databases/database types used:
 • Relational: postgreSQL
 • Graph-based: OrientDB
Motivation and Background

Related Work

Problem Statement

System Design and Implementation

Evaluation

Conclusion
Evaluation – Test Data Sets and Test Cases

→ Measure the prototype’s performance under varying conditions

- **Test data sets** simulate different attacks:
 - **DDoS**: many sources attack a small number of targets
 - **AP**: Attack path: an attack spreads in the network
 - **F**: Flooding: Multiple IDSes raise the same alert
 - **Test data set size**: from 1000 to 5000 alerts

- **Test cases** simulate typical tasks of the intrusion handling system
 - **Node Insertion**: Adding of Alert and Alert Context nodes
 - **Node Prioritization**: Updates Priority attribute of Alert and Alert Context nodes with random number
 - **Node Combination**: Combining related Alerts Context nodes
 - **Test cases are cumulative**, e.g., t3 contains t1 and t2
Measurement Results: Alerts per Second

<table>
<thead>
<tr>
<th>Exp.</th>
<th>$p\text{SQL}_{\text{min}}$</th>
<th>$p\text{SQL}_{\text{max}}$</th>
<th>$p\text{SQL}_{\text{avg}}$</th>
<th>$O\text{rient}_{\text{min}}$</th>
<th>$O\text{rient}_{\text{max}}$</th>
<th>$O\text{rient}_{\text{avg}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$D\text{DoS}_{\text{ins}}$</td>
<td>287.09</td>
<td>354.72</td>
<td>320.75</td>
<td>11.4</td>
<td>19.72</td>
<td>14.73</td>
</tr>
<tr>
<td>$D\text{DoS}_{\text{prio}}$</td>
<td>228.61</td>
<td>307.27</td>
<td>257.8</td>
<td>8.4</td>
<td>16.24</td>
<td>11.55</td>
</tr>
<tr>
<td>$D\text{DoS}_{\text{comb}}$</td>
<td>64.97</td>
<td>125.44</td>
<td>86.15</td>
<td>1.37</td>
<td>6.75</td>
<td>3.12</td>
</tr>
<tr>
<td>$A\text{P}_{\text{ins}}$</td>
<td>299.4</td>
<td>355.76</td>
<td>324.76</td>
<td>12.5</td>
<td>19.35</td>
<td>15.13</td>
</tr>
<tr>
<td>$A\text{P}_{\text{prio}}$</td>
<td>230.36</td>
<td>287.86</td>
<td>250.71</td>
<td>8.91</td>
<td>16.23</td>
<td>11.62</td>
</tr>
<tr>
<td>$A\text{P}_{\text{comb}}$</td>
<td>30.80</td>
<td>85.12</td>
<td>49.59</td>
<td>0.51</td>
<td>3.01</td>
<td>1.1</td>
</tr>
<tr>
<td>F_{ins}</td>
<td>370.32</td>
<td>396.63</td>
<td>384.58</td>
<td>37.88</td>
<td>50.87</td>
<td>44.77</td>
</tr>
<tr>
<td>F_{prio}</td>
<td>318.1</td>
<td>330.31</td>
<td>325.04</td>
<td>15.4</td>
<td>35.29</td>
<td>23.38</td>
</tr>
<tr>
<td>F_{comb}</td>
<td>281.78</td>
<td>293.31</td>
<td>287.73</td>
<td>14.13</td>
<td>18.00</td>
<td>16.97</td>
</tr>
</tbody>
</table>

Table contains min, max and average rates of all test data set sizes
Measurement Results: Nodes per Second

Graph shows results of node combination test case
Motivation and Background

Related Work

Problem Statement

System Design and Implementation

Evaluation

Conclusion
Conclusion

- Related work has drawbacks: information sharing is difficult between intrusion handling steps, information loss, ...

- Our contributions:
 - Blackboard-pattern for intrusion handling
 - Suitable information model
 - Enables Information sharing between intrusion handling steps
 - Proof-of-concept implementation using two different DBs

- Future Work:
 - Information security of the data on the Blackboard
 - Improving performance
Contact

Thank you for the audience!

Nadine Herold, Holger Kinkelin and Georg Carle

Technische Universität München
Department of Informatics
Chair of Network Architectures and Services
Boltzmann Straße 3
85748 Garching bei München
Germany

{lastname}@net.in.tum.de
https://github.com/Egomania/BlackboardIDRS